Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis
نویسندگان
چکیده
This paper proposes an adaptive evolutionary radial basis function (RBF) network algorithm to evolve accuracy and connections (centers and weights) of RBF networks simultaneously. The problem of hybrid learning of RBF network is discussed with the multi-objective optimization methods to improve classification accuracy for medical disease diagnosis. In this paper, we introduce a time variant multi-objective particle swarmoptimization (TVMOPSO)of radial basis function (RBF)network fordiagnosing themedical diseases. This study applied RBF network training to determine whether RBF networks can be developed using TVMOPSO, and the performance is validated based on accuracy and complexity. Our approach is tested on three standard data sets from UCI machine learning repository. The results show that our approach is a viable alternative and provides an effective means to solve multi-objective RBF network for medical disease diagnosis. It is better than RBF network based on MOPSO and NSGA-II, and also competitive with other methods in the literature. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملApplication of Multi Objective HFAPSO algorithm for Simultaneous Placement of DG, Capacitor and Protective Device in Radial Distribution Network
In this paper, simultaneous placement of distributed generation, capacitor bank and protective devices are utilized to improve the efficiency of the distribution network. The objectives of the problem are reduction of active and reactive power losses, improvement of voltage profile and reliability indices and increasing distribution companies’ profit. The combination of firefly algorithm, parti...
متن کاملOptimum Shape Design of Double-layer Grids by Quantum Behaved Particle Swarm Optimization and Neural Networks
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملOptimal Placement of Remote Control Switches in Radial Distribution Network for Reliability Improvement using Particle Swarm Optimization with Sine Cosine Acceleration Coefficients
Abstract: One of the equipment that can help improve distribution system status today and reduce the cost of fault time is remote control switches (RCS). Finding the optimal location and number of these switches in the distribution system can be modeled with various objective functions as a nonlinear optimization problem to improve system reliability and cost. In this article, a particle swarm ...
متن کاملParticle Swarm Optimization Approach for Multi-step-ahead Prediction Using Radial Basis Function Neural Network
An alternative approach, between much others, for mathematical representation of dynamics systems with complex or chaotic behaviour, is a radial basis function neural network using k-means for clustering and optimized by pseudo-inverse and particle swarm optimisation. This paper presents the implementation and study to identify a dynamic system, with nonlinear and chaotic behaviour, called Röss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 11 شماره
صفحات -
تاریخ انتشار 2011